

Seminar on Vedic Mathematics

Dr. Chandrasekharan Raman

December 5, 2015 Bridgewater Temple Hall, NJ

Ancient Indian Mathematics

- Sulba Sutras (700 BC) rational approximation to $\sqrt{2}$, proof to Pythagoras theorem etc.
- Pingala's Chandas (300 BC) combinatorics
- Jain Mathematicians (300 BC) concept of infinity and zero (shunya)
- Classical period (400 AD 1600 AD)
 - Aryabhata sine table, trigonometry, π
 - Brahmagupta cyclic quadrilateral, indeterm Equ.
 - Bhaskara II Lilavati, Bijaganita
 - Madhava infinite series for π
- Excellent source : Wikipedia (Indian Mathematics)

Vedic Mathematics

• What is Vedic Mathematics?

- "Vedic Mathematics" is the name given to a work in Indian Mathematics by Sri Bharati Krsna Tirthaji (1884-1960). Vedic Math is based on <u>sixteen Sutras</u> or principles
- What it is not?
 - It is not from the Vedas
 - It is not ancient
- Why Vedic Mathematics?
 - Gives an insight into the structure of numbers
 - Very much amenable to mental calculations

Decimal Number System in Ancient India

- The decimal number system representing numbers in base 10, was a contribution to the world by Indians
- The Place Value System was also a contribution of India

Name	Value	Name	Value
Eka	10 ⁰	Arbudam	107
Dasa	10 ¹	Nyarbudam	10 ⁸
Shatam	10 ²	Samudra	10 ⁹
Sahasram	10 ³	Madhyam	10 ¹⁰
Ayutam	104	Anta	10 ¹¹
Niyutam	10 ⁵	Parardha	10 ¹²
Prayutam	10 ⁶		

Maths in day-to-day life of a vendor in India

-				
1	11	21	31	41
2	12	22	32	42
3	13	23	33	43
4	14	24	34	44
5	15	25	35	45
6	16	26	36	46
7	17	27	37	47
8	18	28	38	48
9	19	29	39	49
10	20	30	40	50

- You buy some stuff from a vendor for Rs 23
- You pay a 50-rupee note
- He pays you back
 - A 2-rupee note
 - A 5-rupee note
 - A 20-rupee note
- In that order!!

It is the reverse when you input the numbers into a machine!

Complementary Arithmetic

 100's complement of 64 = 36 (All from 9, last from 10)

Use of Complementary Arithmetic

- Computer Systems use 2's complement as a way to represent negative numbers!
 - Make use of binary numbers, hence base = 2
- In decimal number systems too, complement numbers can be used to represent negative numbers
- Forms the heart of Vedic Math Techniques!
- EXAMPLE
 - 96 x 4
 - □ 104 x 4 = 416 = **384**

Polynomial representation

- Consider the number 36428
 3 × 10⁴ + 6 × 10³ + 4 × 10² + 2 × 10 + 8
- 10 → x (replacing the base with variable x)
 3x⁴ + 6x³ + 4x² + 2x + 8
- Every number can be represented as a polynomial in the base of the system
- Useful to use algebra to explain some of the working methods of techniques