Seminar on Vedic Mathematics

Dr. Chandrasekharan Raman

December 5, 2015
Bridgewater Temple Hall, NJ

Ancient Indian Mathematics

- Sulba Sutras (700 BC) - rational approximation to $\sqrt{ } 2$, proof to Pythagoras theorem etc.
- Pingala's Chandas (300 BC) - combinatorics
- Jain Mathematicians (300 BC) - concept of infinity and zero (shunya)
- Classical period (400 AD - 1600 AD)
- Aryabhata - sine table, trigonometry, π
- Brahmagupta - cyclic quadrilateral, indeterm Equ.
- Bhaskara II - Lilavati, Bijaganita
- Madhava - infinite series for π
- Excellent source : Wikipedia (Indian Mathematics)

Vedic Mathematics

- What is Vedic Mathematics?
- "Vedic Mathematics" is the name given to a work in Indian Mathematics by Sri Bharati Krsna Tirthaji (1884-1960). Vedic Math is based on sixteen Sutras or principles
- What it is not?
- It is not from the Vedas
- It is not ancient
-Why Vedic Mathematics?
- Gives an insight into the structure of numbers
- Very much amenable to mental calculations

Decimal Number System in Ancient India

- The decimal number system - representing numbers in base 10 , was
a contribution to the world by Indians
- The Place Value System was also a contribution of India

Name	Value	Name	Value
Eka	$10^{\mathbf{0}}$	Arbudam	10^{7}
Dasa	$10^{\mathbf{1}}$	Nyarbudam	10^{8}
Shatam	10^{2}	Samudra	10^{9}
Sahasram	$10^{\mathbf{3}}$	Madhyam	10^{10}
Ayutam	10^{4}	Anta	10^{11}
Niyutam	10^{5}	Parardha	10^{12}
Prayutam	10^{6}		

Maths in day-to-day life of a vendor in India

1	11	21	31	41
2	12	22	32	42
3	13	23	33	43
4	14	24	34	44
5	15	25	35	45
6	16	26	36	46
7	17	27	37	47
8	18	28	38	48
9	19	29	39	49
10	20	30	40	50

- You buy some stuff from a vendor for Rs 23
- You pay a 50-rupee note
- He pays you back
- A 2-rupee note
- A 5-rupee note
- A 20-rupee note
- In that order!!

It is the reverse when you input the numbers into a machine!

Complementary Arithmetic

- 100's complement of $64=36$ (All from 9, last from 10)

Use of Complementary Arithmetic

- Computer Systems use 2's complement as a way to represent negative numbers!
- Make use of binary numbers, hence base $=2$
- In decimal number systems too, complement numbers can be used to represent negative numbers
- Forms the heart of Vedic Math Techniques!
- EXAMPLE
- 96×4
- $10 \overline{4} \times 4=4 \overline{16}=384$

Mishrānk

Polynomial representation

- Consider the number 36428
- $3 \times 10^{4}+6 \times 10^{3}+4 \times 10^{2}+2 \times 10+8$
- $10 \rightarrow \mathrm{x}$ (replacing the base with variable x)
- $3 x^{4}+6 x^{3}+4 x^{2}+2 x+8$
- Every number can be represented as a polynomial in the base of the system
- Useful to use algebra to explain some of the working methods of techniques

